Id	1
Question	If the vectors $2\hat{i}-\hat{j}+\hat{k}$, $\hat{i}+2\hat{j}-3\hat{k}$ and $3\hat{i}+a\hat{j}+5\hat{k}$ are coplanar then the value of 'a' will be
A	4
В	-4
С	2
D	-2
Answer	В

Id	2
Question	The graph of the curve $y^2 = x^2 + x$ is symmetric about
А	Only y – axis
В	Only x - axis
С	Both x and y axes
D	Neither x nor y axes
Answer	В

Id	3
Question	For a matrix $T = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$ if λ_1 and λ_2 are the eigen values of T with the corresponding eigen – vectors X_1 and X_2 , then which of the following statements is
	true?
A	$\lambda_1 = \lambda_2 = 1$ And matrix T can be made diagonal.
В	$\lambda_1 = \lambda_2 = 1$ And, X_1 and X_2 are degenerate eigen vectors.
С	$\lambda_1 = \lambda_2 = 1$ And, $X_1 = \alpha X_2$ for a non-zero constant α .
D	$\lambda_1 = \lambda_2 = i$ And, matrix T can not be made diagonal.
Answer	С

Id	4
Question	If ω is non – real (imaginary) cube root of unity, then $(1+\omega)^7 =$
А	$(1+\omega)$
В	ω
С	$-\omega$
D	$-(1+\omega)$
Answer	Α
Marks	1
Unit	Pet_Physics_II

Id	5
Question	General solution of differential equation $\frac{d^2 y}{dx^2} - y = 0$ is
А	$y = C e^x$
В	$y = C e^{x}$ $y = C e^{-x}$
С	$y = C_1 e^x + C_2 e^{-x}$
D	None of the above
Answer	С

Id	6
Question	In the Fourier service expansion of a periodic function,
Α	Even functions have only a constant and cosine terms in their Fourier series expansion.
В	Even functions have a constant terms and sine terms in their Fourier series expansion.
С	Odd functions have a constant term and sine terms in their Fourier series expansion.
D	Odd functions have a constant term and cosine terms in their Fourier series expansion.
Answer	Α

Id	7
Question	A mass of 2 kg is attached to one end of a horizontal spring and is undergoing simple harmonic motion. The displacement 'x' of the mass at a time t (measured in seconds) from the equilibrium position is given by $x=10^{-3}\cos(5\theta t)$. the magnitude of the force acting on the mass when it is at a distance x = 1 mm, is
А	0.5 N
В	0.05 N
С	5.0 N
D	50 N
Answer	С

Id	8
Question	A uniform disc of radius 'r' and mass 'm' is rotating with angular speed ω about its own axis. If suddenly (due to some internal reason), the mass of the disk increases to 2m, then the value of angular speed will be
A	ω/2
В	2ω
С	ω
D	None of the above
Answer	Α

Id	9
Question	For a spherical pendulum, the number pf degree of freedom is.
А	1
В	2
С	3
D	4
Answer	В

Id	10
Question	For a particle moving in central force field,
А	The kinetic energy is a constant of motion
В	The potential energy is velocity dependent
С	The motion is confined in a plane.
D	Total energy is not conserved
Answer	С

Id	11
Question	If a coordinate corresponding to rotation is cyclic in Lagrangian, then
А	Kinetic energy is conserved
В	Potential energy is conserved
С	Linear momentum is conserved
D	Angular momentum is conserved
Answer	D

Id	12
Question	The Hamiltonian H for the spring mass system, shown in fig is
	K (~~)
A	$H = \frac{1}{2}m\dot{x^{2}} + \frac{1}{2}kx^{2}$
В	$H = \frac{p x^2}{2 m} + 1/2 k x^2$
С	$H = \frac{p x^2}{2 m} - 1/2 k x^2$
D	$H = \frac{p x^2}{2 m} + 1/2 k x$
Answer	В

Id	13
Question	If \hat{m} and \hat{k} represent the directions of polarization and propagation of plane electromagnetic wave, then,
А	\hat{n} . $\hat{k} = 0$
В	$\hat{n} \times \hat{k} = 0$
С	$\hat{n} = \hat{k}$
D	$\hat{n} = -\hat{k}$
Answer	Α

Id	14
Question	Two free particles of mass m each are moving with non – relativistic velocities. They have energies E_1 and E_2 and de – Broglie wavelengths λ_1 and λ_2 , respectively. Which of the following statements is true?
А	$\frac{\lambda_1}{\lambda_2} = \frac{E_1}{E_2}$
В	$\frac{\lambda_1}{\lambda_2} = \frac{E_2}{E_1}$
С	$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}}$
D	$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_1}{E_2}}$
Answer	С

Id	15
Question	The orbital angular momentum of a 2 s electron is
А	$\frac{h}{2\pi}$
В	0
С	1
D	$\frac{h}{4\pi}$
Answer	В

Id	16
Question	Which of the following transitions in hydrogen atom emits a photon of highest frequency, $(n = principle quantum number)$
Α	n = 10 to $n = 6$
В	n = 6 to $n = 2$
С	n = 3 to $n = 2$
D	n = 2 to $n = 1$
Answer	D

Id	17
Question	If the potential is invariant under reflection i.e. $V(x) = -V(-x)$, the solutions $\psi(x)$ of the one dimensional Schrodinger eigen value equation are
А	All either even or odd
В	All even
С	All odd
D	Neither odd nor even
Answer	Α

Id	18
Question	The ground state of hydrogen atom is given as $\psi(r) = \left(\frac{1}{\pi a^3}\right)^{1/2} e^{-r/a}$, where 'r' is the radial coordinate and 'a' is the Bohr radius. The average value of r is
А	0
В	$\frac{a}{2}$
C	$\frac{5a}{2}$
D	$\frac{3a}{2}$
Answer	D

Id	19
Question	A free electron is placed in the path of a plane electromagnetic wave. The electron will start moving
А	Along the electric field
В	Along the magnetic field
С	Along the direction of the propagation of wave.
D	In a plane containing the magnetic field and the direction of propagation
Answer	Α

Id	20
Question	Consider a hemisphere of radius R placed with its base on x y plane. A constant electric field \vec{E} , pointing in the positive \not{Z} direction passes through the hemisphere. The electric flux through the hemisphere will be
A	$\pi R^2 \vec{E} $
В	$4 \pi R^2 \vec{E} $
С	$2\pi R^2 \vec{E} $
D	0
Answer	Α

Id	21
Question	Electrical charges +q are placed at Four vertices of a regular pentagon with sides of equal length 'l' as shown in figure. Each vertex of the pentagon is at a distance 'a' from the center of the pentagon. The magnitude of the electric field at the center of the pentagon is
	$+ \frac{4}{2}$
A	$\left(\frac{1}{\pi \in_0}\right) \frac{q}{a^2}$
В	$\left(\frac{1}{4\pi\epsilon_0}\right)\frac{q}{l^2}$
С	$\left(\frac{1}{4\pi\epsilon_0}\right)\frac{q}{a^2}$
D	$\left(\frac{1}{\pi\epsilon_0}\right)\frac{q}{l^2}$
Answer	С

Id	22
Question	A point charge q is placed at distance 'd' from an infinite conductor of radius 'r' held at zero potential, then the surface charge density of induced charge is
А	$-\frac{qd}{2\pi r^4}$
В	$\frac{qd}{2\pir^4}$
С	$\frac{qd}{2\pir^3}$
D	$-\frac{qd}{2\pi r^3}$
Answer	D

Id	23
Question	In a dielectric, the polarization is
А	Exponential function of applied electric field
В	Linear function of applied electric field
С	Square function of applied electric field
D	Logarithmic function of applied electric field
Answer	В

Id	24
Question	A current of 'I' ampere flows in a circular arc of a wire whole radius is R. the wire subtends an angle 270° at its center. The magnitude of magnetic field B at the center is
A	$\frac{\mu_0 I}{R}$
В	$\frac{\mu_0 I}{2 R}$
С	$\frac{2\mu_0 I}{R}$
D	$\frac{3\mu_0 I}{8R}$
Answer	D

Id	25
Question	The magnetic induction at a distance 'd' from an infinitely long straight wire, in which current I is flowing through, using Biot Savart law is
A	$\frac{\mu_0}{4\pi}\hat{k}$
В	$\frac{\mu_0}{4\pi} \left(\frac{2I}{d}\right) \hat{k}$
С	$\frac{\mu_0}{4\pi} \left(\frac{I}{d} \right)$
D	None of the above
Answer	В

Id	26
Question	Consider a cubic crystal with lattice constant 'a' A plane intersects $x - axis$ at 'a' and $y - axis$ at '2a' and is parallel to $Z - axis$. The Miller indices for this plane are
A	(0 1 2)
В	(210)
С	(1 0 2)
D	(1 2 0)
Answer	В

Id	27
Question	The longest wavelength $x - ray$ that can undergo Bragg diffraction in a crystal from a given family of planes of spacing 'd' is
А	d
В	2d
С	d/2
D	d/4
Answer	В

Id	28
Question	Point defect in a crystal consist of
А	Only vacancies
В	Vacancies and interstitials
С	Vacancies, interstitials and impurity atoms
D	Interstitials and impurity atoms
Answer	C

Id	29
Question	According to Einstein model, the specific heat of a solid lower temperature
А	Remains constant
В	Drop non – linearly with increase in temperature
С	Drops linearly with decreases in temperature
D	Drops exponentially with decrease in temperature
Answer	D

Id	30
Question	Bonding in silicon carbide is mostly by
А	Ionic bond
В	Partially ionic partially covalent bonds
С	Covalent bond
D	Van der walls bond
Answer	C

Id	31
Question	The curie law $\left(X = \frac{C}{T}\right)$ is valid for
А	Paramagnetic substances
В	Ferromagnetic substances
С	Diamagnetic substances
D	Anti – Ferromagnetic substances
Answer	Α

Id	32
Question	The magnetic susceptibility of super conductor is
Α	Positive and unity
В	Negative and unity
С	Positive and small
D	Negative and small
Answer	В

Id	33
Question	The effective number of states in conduction bond of a semi conductor is given by
Α	$N_c = 2 \left[\frac{2m^* k T}{h^2} \right]^{1/2}$
В	$N_c = 2 \left[\frac{2m^* k T}{h^2} \right]^{-1/2}$
С	$N_c = 2 \left[\frac{2 \pi m^* k T}{h^2} \right]$
D	$N_c = \left[\frac{2\pi m^* k T}{h^2}\right]$
Answer	Grace mark

Id	34
Question	The average translational kinetic energy per molecule of an ideal gas is
Α	kT
В	$\frac{1}{2}kT$
С	3 k T
D	$\frac{3}{2}kT$
Answer	D
Id	35
Question	For isothermal expansion of an ideal gas, which of the following statements holds true?
Α	Heat absorbed ΔQ is zero
В	Workdone ΔW by the gas is zero
С	$\Delta W = -\Delta Q$
D	$\Delta W = \Delta Q/2$
Answer	C

Id	36
Question	Which of the following expressions represents the combined form of the first and second laws of thermodynamics
А	TdS = dU + PdV
В	dU = dQ + TdS
С	dQ = TdS + PdV
D	TdS = dU - PdV
Answer	A

Id	37
Question	Given that $_{3}Li^{7} = 7.01816 amu$, $_{3}Li^{6} = 6.01692 amu$, $_{0}n^{1} = 1.00893 amu$ The binding energy of a neutral in a $_{3}Li^{7}$ nucleus is
А	0.51 MeV
В	1.04 MeV
С	2.08 MeV
D	7.17 MeV
Answer	В

Id	38
Question	Which of the following nuclear processes is forbidden?
A	$\overline{\nu} + p \rightarrow n + e^{-1}$
В	$\pi \to e^{-} + v_e + \pi^0$
С	$\pi + p \rightarrow n + k^+ + k^-$
D	$\mu \rightarrow e + \nu \overline{e} + \nu \mu$
Answer	A

Id	39
Question	Estimate the binding fraction for a given $_{47} Ag^{107}$ nuclei is [Given Mass of proton = 1.007825 amu Mass of Neutron = 1.008665 amu Mass of silver = 106.905091 amu] 1 amu = 9.71.5 MeV
А	8.10 MeV / nuclear
В	8.54 MeV / nuclear
С	8.95 MeV / nuclear
D	9.25 MeV / nuclear
Answer	В

Id	40
Question	Which of the following statements is incorrect for the nuclear force between two nucleons?
А	It is charge independent
В	It is Spin independent
С	It is Velocity dependent
D	It has non – central component
Answer	В

Id	41
Question	Nuclei which are β - <i>emitter</i> lie
А	Below the line of β -stability
В	On the line of β -stability
С	Above the line of β -stability
D	Below the $N = Z$ line
Answer	A

Id	42
Question	Estimate the size of the Gold ($z=79$) nucleus if it is bombarded by 2 MeV alpha ($z=2$) particle.
A	2.26×10^{-13} meter
В	1.13×10^{-13} meter
С	4.52×10^{-13} meter
D	6.60×10^{-13} meter
Answer	В

Id	43
Question	A silicon diode dissipates 5W of power when the dc current of 2 Amp flows through it. The bulk resistance of the diode is
A	0.6Ω
В	0.9 Ω
С	1.2Ω
D	2.5Ω
Answer	В

Id	44
Question	The following Boolean equation leads to the output $A + \overline{A}B$
Α	A
В	В
С	B+A
D	A+B
Answer	D

Id	45
Question	For the following op – amp circuit is
	o R H o no R
A	A pulse
В	A triangular Waveform
С	A spike
D	A ramp
Answer	В

Id	46
Question	The Boolean expression for the output of the following logic circuit is
	A of the second
A	$Y = AB + A \bar{B} + C$
В	$Y = \overline{A} \ \overline{B} + AB + \overline{C}$
С	$Y = A \overline{B} + \overline{A} B + C$
D	$Y = AB + \bar{A}B + C$
Answer	В

Id	47
Question	In the following Voltage – Controlled feedback amplifies, Calculate the feedback factor. [Neglect V BE and use re = $25 \text{ mV} / \text{IE}$]
	$P_{2} = 1000$
A	0.13
В	0.15
С	0.20
D	0.23
Answer	Α

Id	48
Question	A resistance Potentiometer is a
А	Zero order instrument
В	First order instrument
С	Second order instrument
D	Third order instrument
Answer	Α

Id	49
Question	In wire Wound strain gauges, the change in resistance on application of strain is mainly due to
Α	Change in length of wire
В	Chang in diameter of wire
С	Change both length and diameter of wire
D	Change in resistivity
Answer	С

Id	50
Question	Thermocouples are
А	Passive transducers
В	Active transducers
С	Both active and passive transducers
D	Output transducers
Answer	В